

À LA DÉCOUVERTE DE...

Activité 1

Comment calculer avec les puissances?

Au cours d'un jeu télévisé, les candidats doivent répondre à 15 questions. Les gains sont les suivants : la première réponse correcte permet de gagner 2 €, et à chaque nouvelle réponse correcte le gain est doublé.

- 1. Calculer le gain obtenu après 2 bonnes réponses, après 3 bonnes réponses.
- 2. Comment calculer rapidement le gain obtenu si le candidat donne beaucoup de bonnes réponses ?
 Les puissances et la calculatrice vont nous aider !

On note $2 \times 2 = 2^2$; $2 \times 2 \times 2 = 2^3$; $2 \times 2 \times 2 \times 2 = 2^4$ et ainsi de suite.

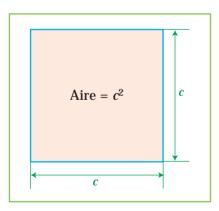
a) Calculer 2^3 en effectuant à la calculatrice l'une des séquences suivantes :

$$\begin{array}{c|c}
2 & \wedge & 3 & \stackrel{ENTER}{=} \\
2 & \wedge & 3 & EXE
\end{array}$$

- b) Calculer 2^9 (2^9 se lit « deux puissance neuf »). Que représente ce nombre pour le candidat ?
- 3. Quel gain maximum un candidat peut-il espérer obtenir ?
- 4. a) Quel est le gain obtenu après 12 bonnes réponses ?
- b) Par quel nombre sera multiplié ce gain avec 3 bonnes réponses supplémentaires ?
- 5. En comparant les méthodes utilisées aux questions 3 et 4, vérifier que $2^{15} = 2^{12} \times 2^3$.

Activité 2

Comment redécouvrir la racine carrée ?



Le tableau suivant donne l'aire d'un carré en fonction de la longueur de son côté. On souhaite compléter ce tableau.

On rappelle que l'aire d'un carré de côté c est $c \times c = c^2$.

Longueur du côté (c)	1	2	3	5		7		
Aire du carré (c²)	1	4	9		36		81	121

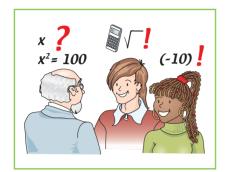
- 1. Compléter la deuxième ligne du tableau.
- 2. On souhaite compléter la première ligne.
- a) Les nombres cherchés sont des nombres simples. Faites des propositions. Chaque proposition doit être justifiée!
- b) On veut confirmer les résultats grâce à la calculatrice.

Effectuer l'une des séquences suivantes :

Vérifier que le nombre obtenu permet de compléter la cinquième colonne. Utiliser la même méthode pour compléter le reste de la première ligne.

Activité 3

Comment résoudre une équation du type $x^2 = a$?



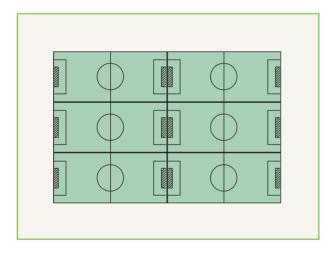
Un professeur demande à ses élèves de la classe de 3^e T de trouver tous les nombres dont le carré est égal à 100.

- 1. Karim utilise la touche racine carrée de sa calculatrice et propose un nombre. Quel est ce nombre ? Vérifier que cette proposition est correcte.
- **2**. Élodie propose comme autre solution le nombre (-10). **Élodie a-t-elle raison ? Pour le vérifier, calculer** $(-10)^2$.
- 3. Pour quelles valeurs de x a-t-on $x^2 = 100$?
- 4. Le professeur demande ensuite les solutions de l'équation $x^2 = 64$. Trouver les deux solutions de cette équation.

.....

Activité 4

Comment encadrer un résultat?



Dans le cadre de l'association sportive UNSS, un collège organise un grand tournoi de football à sept. La longueur L d'un terrain doit être comprise entre 50 m et 75 m et sa largeur ℓ doit être comprise entre 45 m et 55 m.

Pour les qualifications, on a choisi de placer, sur une esplanade, les terrains les uns à côté des autres avec 3 terrains dans le sens de la largeur et 2 dans le sens de la longueur.

1. La phrase « *La longueur* L *d'un terrain doit être comprise entre 50 m et 75 m* » se traduit par l'encadrement suivant : 50 < L < 75 (le symbole < signifie « strictement inférieur à »).

Déterminer l'encadrement de la largeur d'un terrain.

2. Quelle est la distance minimale occupée sur l'esplanade par la longueur de 2 terrains ? Quelle est la distance maximale ?

En déduire un encadrement de la distance occupée sur l'esplanade par la longueur de 2 terrains.

- 3. Donner un encadrement de la distance occupée sur l'esplanade par la largeur de 3 terrains.
- 4. Pour les matchs de la phase finale de ce tournoi, l'organisateur s'interroge sur la possibilité d'augmenter la longueur de chaque terrain de 10 m.
- a) Quelle serait la longueur minimale du nouveau terrain?
- b) Quelle serait sa longueur maximale?
- c) En déduire un encadrement de la longueur du nouveau terrain.

...SOLUTIONS DES ACTIVITÉS

Activité 1

Comment calculer avec les puissances?

1. Le gain pour la première réponse correcte est 2 €.

Pour la deuxième réponse correcte, le gain est doublé ; il est donc égal à $2 \times 2 = 4 \in$. Pour la troisième réponse correcte, le gain est à nouveau doublé ; il est alors égal à $2 \times 2 \times 2 = 8 \in$.

- 2. a) On vérifie que $2^3 = 8$.
- b) À l'aide de la calculatrice, on obtient $2^9 = 512$. Ce nombre représente le gain obtenu après 9 bonnes réponses. Ce gain est égal à $512 \in$.
- 3. Le gain maximum est obtenu pour 15 bonnes réponses. Il est de 2¹⁵ soit 32 768 €.
- 4. a) Le gain obtenu pour 12 réponses correctes est de 2¹² soit 4 096 €.
- **b)** Après chaque bonne réponse supplémentaire, le gain est multiplié par 2. Après 3 bonnes réponses supplémentaires, le gain est multiplié par $2 \times 2 \times 2$ ou encore par 2^3 .
- 5. Avec 12 réponses correctes puis 3 réponses correctes supplémentaires, le candidat a donné 15 réponses correctes. Il obtient alors le gain maximum calculé à la question 3. On en déduit que $2^{15} = 2^{12} \times 2^3$.

Plus généralement, on notera :

$$a^{n} = a \times a \times a \times ... \times a$$

n facteurs

et, si *n* et *p* sont deux nombres entiers, $a^n \times a^p = a^{n+p}$.

Activité 2

Comment redécouvrir la racine carrée ?

1. Pour compléter la deuxième ligne du tableau, on utilise la formule donnant l'aire d'un carré :

$$5^2 = 25$$
 et $7^2 = 49$.

2. a) Pour la cinquième colonne, on propose 6.

En effet, $6^2 = 6 \times 6 = 36$.

Pour les autres colonnes, on propose 9 et 11.

b) On lit à l'affichage 6 et on vérifie que $6 \times 6 = 36$.

Le tableau complété est le suivant :

Longueur du côté (c)	1	2	3	5	6	7	9	11
Aire du carré (c2)	1	4	9	25	36	49	81	121

Observons le tableau. Nous avons vu que 6 a pour **carré** 36. On dit que 6 est la **racine carrée** de 36 et on écrit $6 = \sqrt{36}$. De même : $2 = \sqrt{4}$ et $11 = \sqrt{121}$.

DE DÉCOUVERTE

Activité 3

Comment résoudre une équation du type $x^2 = a$?

1. Karim a obtenu à l'aide de sa calculatrice $\sqrt{100} = 10$.

Donc, il propose 10. On vérifie que $10^2 = 10 \times 10 = 100$, donc la proposition est correcte.

.....

2. En remplaçant 10 par le nombre – 10, on vérifie que :

$$(-10)^2 = (-10) \times (-10) = 100$$
, donc **Élodie a raison**.

On peut aussi utiliser la touche x^2 de la calculatrice, mais attention aux parenthèses ! Il faut réaliser (Casio) la séquence : $(((-))10)x^2$ EXE et non pas $(-)10x^2$ EXE. Avec la seconde séquence, on obtiendrait (10^2) soit (-)100.

3. On a $x^2 = 100$ pour $x = \sqrt{100} = 10$ et pour $x = -\sqrt{100} = -10$.

On dit que les nombres 10 et – 10 sont solutions de l'équation $x^2 = 100$.

4. Les deux solutions de l'équation $x^2 = 64$ sont $x = \sqrt{64} = 8$ et $x = -\sqrt{64} = -8$. On peut vérifier : $8^2 = 64$ et $(-8)^2 = 64$.

Si a est un nombre strictement positif, alors l'équation $x^2 = a$ possède deux solutions : $x = \sqrt{a}$ et $x = -\sqrt{a}$.

Activité 4

Comment encadrer un résultat?

- 1. L'encadrement traduisant les données sur la dimension ℓ est : $45 < \ell < 55$.
- 2. « En longueur », on souhaite disposer deux terrains, donc la distance minimale occupée par l'esplanade est égale à deux fois la longueur minimale d'un terrain, soit $2 \times 50 = 100$ m.

De même, la distance maximale correspond à deux fois la longueur maximale d'un terrain : $2 \times 75 = 150 \text{ m}$.

Donc 100 m < distance occupée sur l'esplanade < 150 m.

3. « En largeur », on souhaite disposer trois terrains dont la largeur ℓ vérifie l'inégalité : $\bf 45 < \ell < \bf 55$. La distance occupée sur l'esplanade est égale à $3 \times \ell$.

Donc $3 \times 45 < 3 \times \ell < 3 \times 55$.

135 m < distance occupée sur l'esplanade < 165 m.

- **4.** a) Le nouveau terrain a pour longueur minimale : 50 + 10 = 60 m.
- **b)** Il a pour longueur maximale 75 + 10 = 85 m.
- c) L'encadrement est donc : 60 m < longueur du nouveau terrain < 85 m.

La résolution des questions précédentes a mis en évidence les propriétés suivantes :

- si a < b et si c est un nombre strictement positif, alors $a \times c < b \times c$;
- si a < b, alors a + c < b + c.

L'ESSENTIEL

• Puissance d'exposant entier d'un nombre relatif

Soit a un nombre non nul et n un entier positif non nul. Le produit de n facteurs égaux à a est appelé puissance $n^{\text{ième}}$ de a. On le note a^n , n étant l'exposant.

$$a^{n} = \underline{a \times a \times a \times ... \times a}$$
n facteurs

 a^n se lit « a puissance n ». On pose $a^0 = 1$, $a^1 = a$.

Le nombre a^{-n} représente l'inverse de a^n : $a^{-n} = \frac{1}{a^n}$.

Calculs avec les puissances (n et p entiers quelconques):

$$a^{n} \times a^{p} = a^{n+p}$$
; $\frac{a^{n}}{a^{p}} = a^{n-p}$; $(a \times b)^{n} = a^{n} \times b^{n}$

• Écriture scientifique

L'écriture scientifique permet d'écrire un nombre décimal sous la forme $a \times 10^p$ dans laquelle a est compris entre 1 et 10 (exclu) et p est un entier positif, négatif ou nul.

Racine carrée

Si a désigne un nombre positif, on appelle racine carrée de a le nombre positif dont le carré est a. La racine carrée de a est notée \sqrt{a} .

Si
$$a > 0$$
 et $b > 0$, alors $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$.

La calculatrice permet d'obtenir la valeur (le plus souvent une valeur approchée) de \sqrt{a} en utilisant la touche racine carrée : $\boxed{\sqrt{}}$.

• Résolution des équations du type $x^2 = a$

Si a est un nombre strictement positif, alors l'équation $x^2 = a$ possède deux solutions : $x = \sqrt{a}$ et $x = -\sqrt{a}$.

Si a est un nombre strictement négatif, alors l'équation $x^2 = a$ n'a pas de solution.

Inégalités et opérations

• Inégalités et addition

On peut additionner un même nombre aux deux membres d'une inégalité :

si
$$a < b$$
 alors $a + c < b + c$.

• Inégalités et multiplication

On peut multiplier chaque membre d'une inégalité par un même nombre **strictement positif** :

si
$$a < b$$
 et si $c > 0$ alors $a \times c < b \times c$.

EXERCICES ET PROBLEMES

EXERCICES

► Rappels sur les calculs fractionnaires

Point méthode

Si a, b, c, d et k sont des nombres non nuls:

$$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$$

$$\frac{k \times a}{k \times b} = \frac{a}{b}$$

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$$

1 Calculer et simplifier :

$$A = \frac{2}{3} + \frac{5}{6}.$$

Corrigé

Pour calculer A, il faut d'abord mettre les deux fractions sur le même dénominateur. Pour cela, on multiplie le numérateur et le dénominateur de la première fraction par 2.

$$A = \frac{2 \times 2}{2 \times 3} + \frac{5}{6} = \frac{4}{6} + \frac{5}{6}.$$

A est de la forme $\frac{a}{b} + \frac{c}{b}$. On utilise la relation :

$$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}.$$

D'où :
$$A = \frac{4}{6} + \frac{5}{6} = \frac{4+5}{6} = \frac{9}{6}$$
.

La fraction obtenue peut être simplifiée par 3.

Donc:
$$A = \frac{9}{6} = \frac{3 \times 3}{3 \times 2} = \frac{3}{2}$$
.

Pour les exercices 2 à 5, calculer et simplifier.

2
$$B = \frac{4}{5} + \frac{7}{15}$$
; $C = \frac{3}{4} + \frac{5}{6}$.

3 D =
$$\frac{4}{5} - \frac{3}{2}$$
; E = $\frac{4}{9} - \frac{1}{6}$.

4 A =
$$\frac{7}{3} \times \frac{5}{3}$$
; B = $\frac{4}{7} \div \frac{3}{5}$.

5
$$C = \frac{-5}{6} \times \frac{4}{7}$$
; $D = \frac{3}{11} \div \frac{9}{11}$.

6 Calculer les fractions suivantes et les mettre sous la forme d'une fraction irréductible en détaillant les étapes de calcul :

$$A = \left(\frac{3}{4} + \frac{1}{5}\right) \times \frac{11}{3}$$

$$B = \left(\frac{1}{7} - \frac{2}{5}\right) \times \frac{7}{2}.$$

7 Même question que pour l'exercice précédent :

$$C = \left(1 + \frac{3}{5}\right) \div \frac{5}{4}$$

$$D = \left(\frac{10}{3} - \frac{2}{7}\right) \div \frac{3}{14}.$$

► Calculer avec les puissances

8 Calculer 3^4 , 4^3 et 4×3 .

Corrigé

- Par définition de la puissance d'un nombre,
 3⁴ est le produit de 4 facteurs égaux à 3.
- $3^4 = 3 \times 3 \times 3 \times 3 = 81.$
- 4^3 est le produit de 3 facteurs égaux à 4. $4^3 = 4 \times 4 \times 4 = 64$.
- $4 \times 3 = 12$
- 9 Calculer 4¹, 3², 5³, 1⁴, 2⁵, 10⁶.

10 En informatique, 1 kilooctet est égal à 2¹⁰ octets. Combien y a-t-il d'octets dans 1 kilooctet ? On utilisera la calculatrice.

11 Calculer $(-3)^2$, $(-5)^1$, $(-4)^3$, $(-2)^4$.

12 Donner une écriture décimale des nombres suivants :

$$2^{-1}$$
; 4^{-3} ; 5^{-2} ; $(-2)^{-5}$.

13 Calculer en utilisant la calculatrice les nombres suivants :

$$1,1^2$$
; $2,3^4$; $(-4,1)^3$; $(-3,89)^1$.

14 Écrire chaque expression suivante sous la forme a^p et la calculer.

$$A = 3^7 \times 3^5$$

$$B = \frac{4^5}{4^3}$$

$$C = 2^6 \times 5^6.$$

Corrigé

• A est de la forme $a^n \times a^p$. On utilise la propriété $a^n \times a^p = a^{n+p}$. Donc : A = $3^7 \times 3^5 = 3^{7+5} = 3^{12}$.

$$A = 531 441.$$

• B est de la forme $\frac{a^n}{a^p}$.

On utilise la propriété $\frac{a^n}{a^p} = a^{n-p}$.

$$B = \frac{4^5}{4^3} = 4^{5-3} = 4^2.$$

$$B = 16.$$

• C est de la forme $a^n \times b^n$. On utilise la propriété $(a \times b)^n = a^n \times b^n$. C = $2^6 \times 5^6 = (2 \times 5)^6 = 10^6$.

C = 1000000.

15 Recopier et compléter :

$$D = 4^6 \times 4^5 = 4^{\cdots + \cdots} = 4^{\cdots}$$

$$E = 2^3 \times 2^{...} = 2^7$$

$$F = 7^8 \times 5^8 = 8$$

$$G = \frac{9^7}{0^3} = 9^{\dots - \dots} = 9^{\dots}$$

$$H = \frac{(-5)^{12}}{(-5)^{\cdots}} = (-5)^7$$

$$I = \frac{4.21^{\cdots}}{4.21^8} = 4.21^{-3}.$$

Pour les exercices 16 à 19, écrire l'expression sous la forme a^p et la calculer.

16 A =
$$(-3)^4 \times (-3)^6$$

B = $3^7 \times 8^7$.

17
$$C = 1.6^8 \times 1.6^{-3}$$

 $D = \frac{7^3}{7^8}$.

18 A =
$$\frac{1}{4^{-3} \times 4^{-5}}$$

B = $\frac{5^2 \times 5^7}{5^4}$.

19
$$C = \frac{2^6 \times 7^6}{14^2}$$

$$D = \frac{11^2 \times 11^5 \times 11^{-3}}{11^4 \times 11^{-2}}.$$

► Calculer avec les puissances de 10

Le saviez-vous ?

Les puissances de 10 peuvent s'écrire facilement en écriture décimale.

Soit *n* un entier naturel non nul.

$$10^{n} = \underbrace{10 \times 10 \times \dots}_{n \text{ facteurs}} = \underbrace{10 \dots 0}_{n \text{ zéros}}$$

$$10^{-n} = \frac{1}{10^{n}} = 0,0...01$$
n chiffres après la virgule

20 Écrire 10⁵ et 10⁻⁵ en écriture décimale.

(Corrigé)

$$10^5 = 10 \times 10 \times 10 \times 10 \times 10 = 100\ 000$$
5 facteurs
5 zéros

$$10^{-5} = \frac{1}{10^5} = 0,000 \text{ 01}$$
5 chiffres

21 Écrire les nombres suivants en écriture décimale :

$$10^4$$
; 10^{-2} ; 10^3 ; 10^{-4} .

22 Écrire les quatre nombres suivants sous la forme 10ⁿ.

1 000 000

100

0.001

0.000 001

23 Écrire A sous la forme 10ⁿ, puis donner son écriture décimale.

$$A = \frac{10\ 000 \times 100 \times 10^{-3}}{1\ 000\ 000 \times 1\ 000}$$

Point méthode

p est un nombre entier positif.

Pour multiplier un nombre par 10^p, on décale la virgule de *p* rangs vers la droite. Pour multiplier par 10^{- p}, on décale la vir-

gule de *p* rangs vers la gauche. On ajoute des zéros si nécessaire.

24 Calculer 5.1×10^5 et 12.31×10^{-3} .

Corrigé

Pour calculer 5.1×10^5 , on décale la virgule de 5 rangs vers la droite :

$$5.1 \times 10^5 = 510\,000.$$

Pour calculer $12,31\times10^{-3}$, on décale la virgule de 3 rangs vers la gauche :

$$12,31 \times 10^{-3} = 0,012 31.$$

25 Recopier et compléter :

$$25\ 000 = 25 \times 10^{\cdots} = \dots \times 10^{4}$$

 $0.039\ 7 = 397 \times 10^{\cdots} = \dots \times 10^{-2}$.

26 Donner l'écriture décimale des nombres suivants :

 $12,34 \times 10^3$

 3.85×10^{5}

 0.956×10^{-3}

 $0.065 4 \times 10^{5}$.

27 Même question que pour l'exercice précédent :

 8.541×10^{-7}

 954.2×10^{-6}

 80.2×10^{-2}

 $2,09 \times 10^{1}$.

► Écriture scientifique

Point méthode

Tout nombre décimal peut s'écrire de plusieurs manières sous forme $a \times 10^n$.

Par exemple :

$$130 = 130 \times 10^{0} = 13 \times 10^{1} = 1,3 \times 10^{2}$$

 $130 = 0,13 \times 10^{3} = 1300 \times 10^{-1}$.

Parmi toutes ces écritures, une seule est telle que le nombre a soit compris entre 1 et 10 (exclu). Cette écriture est l'écriture scientifique. Ici : $1,3 \times 10^2$.

Pour obtenir l'écriture scientifique d'un nombre décimal :

- on introduit une virgule si nécessaire ou on déplace la virgule existante jusqu'à ce qu'il n'y ait qu'un seul chiffre (différent de zéro) avant la virgule;
- on détermine l'exposant de 10 en comptant les déplacements de la virgule :
- si on se déplace vers la gauche, l'exposant est égal au nombre de déplacements ;
- si on se déplace vers la droite, l'exposant est égal à l'opposé du nombre de déplacements.

28 Déterminer l'écriture scientifique des nombres suivants :

147 000 : 0.003 69.

Corrigé

• Pour 147 000, on introduit une virgule après le 1. On s'est déplacé de 5 rangs vers la gauche, donc l'exposant de 10 est égal à 5 :

 $147\ 000 = 1.47 \times 10^5$.

• Pour 0,003 69, on déplace la virgule de 3 rangs vers la droite, donc l'exposant de 10 est égal à -3:

 $0.00369 = 3.69 \times 10^{-3}$.

29 Recopier et compléter pour obtenir l'écriture scientifique :

2 700 000 =×10...

 $0.24 = \dots \times 10^{\dots}$

30 Déterminer l'écriture scientifique des nombres suivants :

203,54; 0,000 012; 1 489,65.

31 Même question que pour l'exercice précédent :

0,753; 0,095 1; 31,907.

32 Parmi les nombres de l'exercice **26**, retrouver ceux qui ne sont pas en notation scientifique et les écrire en notation scientifique.

► Calculer avec les racines carrées

33 Calculer $\sqrt{169}$.

(Corrigé)

Pour calculer $\sqrt{169}$ avec la calculatrice,

2nd / 169) ENTER

√ 169 EXE

On lit $\sqrt{169} = 13$.

- 34 Calculer les racines carrées suivantes : $\sqrt{4}$: $\sqrt{100}$; $\sqrt{16}$; $\sqrt{25}$.
- 35 Même question que pour l'exercice précédent : $\sqrt{121}$; $\sqrt{1,44}$; $\sqrt{1,96}$; $\sqrt{225}$.
- 36 On donne A = $\sqrt{50}$. Écrire A sous la forme $a\sqrt{2}$, où a est un entier.

(Corrigé)

- On écrit $50 = 2 \times 25$ (25 est le carré de 5).
- On utilise la formule $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$ et on obtient $\sqrt{50} = \sqrt{2 \times 25} = \sqrt{2} \times \sqrt{25}$. Donc A peut s'écrire $5\sqrt{2}$.
- 37 Recopier et compléter :

$$\sqrt{500} = \sqrt{5 \times \dots} = \sqrt{5} \times \sqrt{\dots} = \dots \sqrt{5}$$

$$\sqrt{108} = \sqrt{3 \times \dots} = \sqrt{\dots} \times \sqrt{\dots} = \dots \sqrt{\dots}$$

38 Recopier et compléter :

$$\sqrt{112} = \sqrt{\dots \times \dots} = \sqrt{7} \times \sqrt{\dots} = \dots \sqrt{\dots}$$

 $\sqrt{98} = \sqrt{\dots \times \dots} = \sqrt{\dots} \times \sqrt{\dots} = \dots \sqrt{2}.$

- **39** Écrire B, C et D sous la forme $a\sqrt{b}$ où a et b sont des entiers et où b est le plus petit possible
- $B = \sqrt{20}$; $C = \sqrt{128}$; $D = \sqrt{125}$.
- ► Résoudre une équation du type $x^2 = a$
- 40 Résoudre les équations suivantes :

 $x^2 = 0.81$

 $x^2 = 11$.

(Corrigé)

- L'équation $x^2 = 0.81$ a deux <u>solut</u>ions :
- $x = \sqrt[3]{0.81} = 0.9$ et $x = -\sqrt{0.81} = -0.9$.
- L'équation $x^2 = 11$ a deux solutions :
- $x = \sqrt{11}$ et $x = -\sqrt{11}$.
- 41 Résoudre les équations suivantes :

 $x^2 = 1.21$; $x^2 = 16$

 $x^2 = 7$; $x^2 = 144$.

- 42 Sachant que $13^2 = 169$, résoudre, sans utiliser la calculatrice, l'équation : $x^2 = 1,69$.
- ► Calculer une valeur arrondie

Point méthode

Pour arrondir un résultat à 0,1 (ou au dixième) :

- on observe le résultat ;
- si le deuxième chiffre après la virgule est 0, 1, 2, 3 ou 4, alors le résultat s'écrit avec la première décimale;
- si le deuxième chiffre après la virgule est 5, 6, 7, 8 ou 9, alors le résultat s'écrit en ajoutant 1 à la première décimale.

On procède de manière analogue pour arrondir à 0,01 (au centième), etc.

43 Calculer A et B et arrondir les résultats à 0,01 :

$$A = \sqrt{3}$$
 ; $B = \sqrt{7}$.

(Corrigé

• Pour $\sqrt{3}$, on lit sur la calculatrice : **1.732050808**.

Le troisième chiffre après la virgule est 2, alors la valeur arrondie s'écrit avec la deuxième décimale lue.

Donc la valeur arrondie à 0,01 de A est 1,73.

• Pour $\sqrt{7}$, on lit sur la calculatrice, 2.645751311.

Le troisième chiffre après la virgule est 5, alors on ajoute 1 à la deuxième décimale lue (4+1=5).

Donc la valeur arrondie à 0,01 de B est 2,65.

44 Arrondir les nombres suivants à 0,001 :

B = 9,123 64 ; C = 12,637 21

D = 3,008 5 ; E = 5,589 36.

45 Calculer le périmètre p d'un cercle de rayon R = 4 cm.

Arrondir le résultat à 0,01.

On rappelle : $p = 2\pi R$.

On utilisera la touche $\boxed{\pi}$ de la calculatrice.

46 Calculer A et arrondir le résultat à 0,1 :

$$A = \frac{35,3^2 + \sqrt{13}}{7}.$$

47 Calculer B et C et arrondir à 0,01 :

$$B \ = \ \sqrt{17} + 3,1^2 \qquad ; \qquad C \ = \ \frac{5,9^3 - 4,2^2}{8}.$$

► Inégalités

48 Si 5 < a < 7 :

- **1.** Donner un encadrement de a-3.
- 2. Donner un encadrement de 2a.

(Corrigé)

1. Pour encadrer a-3, on ajoute (-3) dans chaque membre de l'inégalité 5 < a < 7:

$$5 + (-3) < a + (-3) < 7 + (-3)$$

 $2 < a - 3 < 4$.

2. Pour encadrer 2a, on multiplie par 2 chaque membre de l'inégalité 5 < a < 7:

$$2 \times 5 < 2a < 2 \times 7$$

 $10 < 2a < 14$.

49 Si 4 < *b* < 9 :

- **1.** Donner un encadrement de b + 7.
- **2.** Donner un encadrement de b-2.

- **1.** Donner un encadrement de $6 \times c$.
- **2.** Donner un encadrement de 3c + 1.
- **51** Un carré a un côté de longueur comprise entre 3 et 4 cm. Donner un encadrement de son périmètre.

Point méthode

Pour obtenir l'encadrement d'une somme ou d'un produit, on utilisera les règles suivantes :

- on peut ajouter membre à membre deux inégalités ;
- on peut multiplier membre à membre des inégalités composées de nombres positifs.

52 On donne les encadrements suivants :

$$3.4 < x < 3.8$$

 $7.8 < y < 7.9$.

- 1. Écrire un encadrement de x + y.
- **2**. Écrire un encadrement de $x \times y$.

53 Sachant que :

$$1,41 < \sqrt{2} < 1,42$$
 et $1,73 < \sqrt{3} < 1,74$

- **1.** Donner un encadrement de $\sqrt{2} + \sqrt{3}$.
- 2. Donner un encadrement de $\sqrt{6}$.

54 La longueur *L* et la largeur *l* d'un terrain rectangulaire sont telles que :

Donner un encadrement de l'aire, en m², du rectangle.

55 Un carré a une aire de 54 m².

On désigne par *c* la mesure en mètres du côté de ce carré.

- **1.** Exprimer le nombre c sous la forme $a\sqrt{6}$ où a est un nombre entier.
- **2.** Donner un encadrement de la valeur de c au centimètre près.
- **56** Un carré a un côté de longueur comprise entre 3 cm et 3,5 cm.
- 1. Traduire cet énoncé par un encadrement.
- 2. Donner un encadrement de l'aire en cm² du carré.

-----PROBLÈMES -----

*, **, *** : niveau de difficulté du problème — 🚺 : problème corrigé (voir solution page 145).

57 * Donner l'écriture scientifique, puis l'écriture décimale des nombres suivants :

$$A = \frac{7 \times 10^5}{2 \times 10^2}$$

$$B = \frac{0.005 \times 10^6}{25 \times 10^{-4}}$$

$$C = \frac{2 \times 10^6 \times 35 \times 10^{-2}}{5 \times 10^4}$$

$$D = 4 \times 10^6 \times 25 \times 10^{-4}$$

58 * A =
$$\sqrt{18} \times \sqrt{6}$$

et B =
$$5\sqrt{12} + 6\sqrt{3} - \sqrt{300}$$
.

Écrire A et B sous la forme $a\sqrt{3}$ où a est un entier.

59 * Brevet Recopier et compléter le tableau après avoir effectué les calculs.

а	2 <i>a</i>	a ²	2 <i>a</i> ²	$(2a)^2$
2				
- 3				
	4/3			

60 * Brevet Calculer:

$$A = 12 - 5 \times 2$$

$$B = (-4) \times (4-2^2)$$

$$C = \frac{10^4 \times (10^2)^3 \times 10^{-4}}{10^6}$$

$$D = 3\sqrt{36} + 2\sqrt{100} - \sqrt{144}$$

$$\mathsf{E} = \left(\frac{2}{3} \times \frac{9}{4}\right) + \left(\frac{15}{7} \div \frac{5}{14}\right).$$

61 * Brevet Calculer A et donner le résultat sous la forme d'une fraction irréductible :

$$A = \frac{18}{5} \div 6.$$

62 * Brevet Effectuer les opérations et donner le résultat sous la forme d'une fraction irréductible (le détail des calculs est demandé) :

$$B = \frac{2}{3} + \frac{5}{6} - \frac{1}{18}.$$

63 ** Brevet C

Calculer les fractions suivantes et les mettre sous la forme d'une fraction irréductible en détaillant chaque étape de calcul :

$$C = \left(\frac{3}{4} - \frac{1}{5}\right) \times \frac{10}{7} \text{ et } D = \left(1 + \frac{2}{5}\right) \div \frac{7}{4}.$$

64 ** Brevet On donne les quatre fractions suivantes :

$$C = -\frac{1}{2}$$
; $D = \frac{7}{5}$; $E = -\frac{4}{3}$; $F = \frac{3}{10}$.

1. Ranger ces fractions dans l'ordre croissant.

2. Calculer : D + E.

3. Calculer : $E \times F$.

Les résultats seront donnés sous la forme de fractions irréductibles.

65 *** Brevet

1. Calculer et donner le résultat sous la forme d'une fraction irréductible :

$$A = 1 - \frac{59}{60}.$$

2. Monsieur Nérouge dispose de 4 bouteilles de grenadine :

– deux bouteilles contiennent $\frac{1}{5}$ de litre chacune ;

– la troisième contient $\frac{1}{4}$ de litre ;

– la quatrième contient $\frac{1}{3}$ de litre.

Peut-il verser le contenu de ces quatre bouteilles dans un récipient de un litre ? Justifier la réponse.

66 * Brevet Recopier et placer les signes <, > ou =.

$$2,9 \dots \sqrt{8}$$
 ; $3,14 \dots \pi$

$$\frac{3}{6}$$
 ... 0,6 ; $\frac{1}{2}$... $\frac{1}{3}$.

67 ** **Brevet** On donne $F = 5\sqrt{20} + \sqrt{45}$; $G = 5\sqrt{20} \times \sqrt{45} \times \sqrt{5}$.

1. Écrire les nombres F et G sous la forme $a\sqrt{5}$ où a est un nombre entier.

 ${\bf 2.}\ {\bf Ranger}\ {\bf par}\ {\bf ordre}\ {\bf croissant}\ {\bf les}\ {\bf nombres}\ {\bf F}\ {\bf et}\ {\bf G}.$

68 * Brevet Calculer B et arrondir le résultat à 0.001 :

$$B = \frac{5,6^2 + \sqrt{7}}{13}.$$

69 ** Brevet C

- **1.** Donner la valeur décimale de $\sqrt{11}$ arrondie à 0.001.
- **2.** Classer les nombres suivants dans l'ordre croissant :

$$\frac{10}{3}$$
 ; $\sqrt{11}$; $(1.82)^2$.

70 * Brevet Calculer :

- 1. 10^2 ; 2^3 ; puis $10^2 + 2^3$.
- **2.** 10^3 ; 10^{-2} ; puis $10^3 \times 10^{-2}$.
- **3.** $\sqrt{16}$; $\sqrt{4}$; puis $\frac{\sqrt{16} + \sqrt{4}}{2}$.

71 ** Brevet Écrire sous forme décimale :

- $A = 5.4 \times 10^{-2}$
- $B = 6.4 \times 10^3$
- $C = 7.1 \times 10^{-3}$.

72 *** Brevet

Recopier et compléter le tableau suivant :

Écriture décimale	0,02	0,01	
Écriture fractionnaire	1 50		3 10
Notation scientifique	2 × 10 ⁻²		

73 ** Brevet C

Calculer la valeur numérique de l'expression :

$$G = 3.8 \times 10^5 \times 5 \times 10^{-3}$$
.

Donner le résultat :

- 1. sous la forme d'un nombre décimal :
- 2. en notation scientifique.

74 *** Brevet

L'écriture scientifique du nombre 50 000 000 est 5×10^7 et celle de 0,04 est 4×10^{-2} .

Recopier et compléter le tableau suivant en donnant l'écriture scientifique de chaque nombre ou résultat de calculs.

$$\frac{100\ 000 \times 10\ 000 \times 1\ 000\ 000\ 000}{10 \times 1\ 000} = \dots$$

$$50\ 000\ 000 \times 0,000\ 002 = \dots$$

$$(30\ 000 \times 300)^2 = \dots$$

$$A = \frac{65 \times 10^3 \times 10^{-5}}{26 \times 10^2}.$$

Donner l'écriture scientifique du nombre A.

76 ** Brevet

 $0.000\ 003^{4} = \dots$

Calculer et donner le résultat d'abord en écriture décimale, puis en écriture scientifique :

$$C = 153 \times 10^{-4} + 32 \times 10^{-3} - 16 \times 10^{-5}$$
.

77 ** Brevet Calculer:

 $A = 10^6 \times 10^{-3} \times 0.001$

$$B = 0.01 \times 10^4 \times 10^{-6} \times 10000$$
.

78 ** Brevet Donner l'écriture décimale et l'écriture scientifique de C :

$$C \; = \; \frac{4.9 \times 10^{-\;3} \times 1.2 \times 10^{13}}{14 \times 10^2 \times 3 \times 10^5}.$$

79 ** Brevet

Calculer la valeur exacte des expressions suivantes et l'écrire sous la forme la plus simple :

$$A = 3 + 4 \times 5 + 2 \times (15 + 3) ;$$

$$B = \frac{1,25 + 7,50}{0,5 \times 5} \; ; \qquad C = \frac{2\ 000 + 3 \times 10^4}{4 \times 10^2} \; ;$$

$$D = \frac{3}{5} + \frac{8}{3}$$
; $E = \frac{45}{22} \times \frac{66}{15}$;

$$F = \sqrt{14 \times 350} \,.$$

80 ** Brevet

On considère les nombres :

$$E = \frac{3}{5} - \frac{1}{5} \times \left(\frac{5}{2} + 2\right);$$

$$F = \frac{3 \times 10^2 \times 1,2 \times 10^{-5}}{15 \times 10^2};$$

$$G \,=\, \sqrt{63} - 2\sqrt{28} \,+\, \sqrt{700}\,.$$

- **1.** Calculer E et donner le résultat sous la forme d'une fraction irréductible.
- 2. Donner l'écriture scientifique du nombre F.
- **3.** Démontrer que $G = 9\sqrt{7}$.

81 *** Brevet

1. Reproduire et compléter le tableau ci-dessous.

Х	х ²	\sqrt{x}	$\frac{3x}{4}$	2 <i>x</i> – 1
4				
9				
0				
49				

2. Calculer et donner le résultat sous la forme d'une fraction irréductible :

$$\frac{1}{2} + \frac{1}{3} - \frac{1}{6}$$
; $\frac{7}{3} \times \frac{12}{27}$; $3 : \frac{3}{4}$

3. En 2003, 19 élèves d'une classe de 3^e, sur un effectif total de 28, ont obtenu le brevet. Calculer le pourcentage de réussite à 10⁻² près.

82 ** Brevet

1. Calculer A et B et exprimer le résultat sous forme d'une fraction irréductible.

$$A = \frac{1}{5} + \frac{4}{3}$$
; $B = \frac{7}{10} \times 4^2$.

2. Calculer la valeur des expressions suivantes :

$$C = \frac{3^7 \times 3^5}{3^9}$$
 ; $D = \sqrt{6.25}$.

83 ** Brevet

1. a) Effectuer les calculs suivants et donner les résultats sous forme de fractions irréductibles.

$$A = \left(\frac{5}{7}\right)^2 - \frac{2}{7}$$
; $B = \frac{12 \times 10^{-3}}{16 \times 10^{-4}}$; $C = \frac{1}{9} + \frac{1}{12}$.

b) En électricité, pour calculer des valeurs de résistances, on utilise la formule :

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}.$$

Sachant que R_1 = 9 ohms et R_2 = 12 ohms, déterminer la valeur exacte de R.

2. Écrire le nombre $\sqrt{180} + 3\sqrt{80} - 2\sqrt{125}$ sous la forme $a\sqrt{5}$ où a est un nombre entier.

84 *** Brevet

1. Calculer A et B en faisant apparaître chaque étape du calcul et en donnant les résultats sous la forme de fractions irréductibles.

A =
$$1 - \frac{5}{2} \times \frac{4}{15}$$
; B = $\frac{2 - \frac{1}{4}}{2 + \frac{1}{4}}$.

2. Déterminer l'écriture scientifique du nombre $C = 7.5 \times 10^9 \times 2 \times 10^{-14}$.

3. a) Vérifier que $\sqrt{48} = 4\sqrt{3}$.

b) On considère le nombre B = $4\sqrt{48} + 8\sqrt{3}$. Écrire E sous la forme $b\sqrt{3}$ où b est un nombre entier.

85 *** Brevet

1. Effectuer les quatre calculs suivants ; chaque résultat sera donné sous la forme d'un entier.

$$a = \frac{3.9 \times 10^{-4}}{3 \times 10^{-5}}; \qquad b = \frac{15}{9} \times \frac{12}{5} - 3;$$

$$c = \left(2 + \frac{2}{3}\right) : \left(\frac{4}{5} - \frac{2}{3}\right); \qquad d = \frac{4 \times \sqrt{24}}{\sqrt{6}}.$$

2. On construit un codage de la façon suivante :

Nombres entiers	1	2	3	 	 	26
Codes	Α	В	С	 	 	Z

a) Quel est le code du nombre 13?

 b) Quel est le mot formé en codant les quatre résultats obtenus à la première question ?
 Si les calculs sont exacts, on doit retrouver un mot de circonstance.

86 *** Brevet

 Les calculs intermédiaires doivent figurer sur la copie.

a) Écrire sous la forme $a\sqrt{3}$, a étant un entier, le nombre :

$$A = \sqrt{75} + 4\sqrt{12}$$
.

b) Prouver que :

$$\frac{2+\frac{3}{4}}{\frac{3}{4}-5}=-\frac{11}{17};$$

$$\frac{35 \times 10^{22} \times 2 \times 10^{-12}}{42 \times 10^{10}} = \frac{5}{3} \ .$$

2. Dans cette question, seuls les résultats finaux sont attendus et la calculatrice peut être utilisée.

a) Donner la valeur arrondie à 0,001 du

nombre : B =
$$3 + \frac{1}{7 + \frac{1}{16}}$$
.

b) Donner l'écriture scientifique du nombre :

$$C = \frac{10^{-4} \times 4 \times 10^6 \times 5^2}{2 \times 10^{-10}}.$$